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In recent years tunneling centers have frequently been used to explain the 
unusual thermodynamic properties of disordered materials; in these approaches, 
however, the effect of the tunneling-phonon interaction is neglecte& The present 
study considers the archetype model of phonon-assisted tunneling, which is well 
known from other areas of tunneling physics (quantum diffusion, etc.). It is 
shown that the full thermodynamic information can be rigorously extracted 
from a single Green function. An extended factorization procedure beyond 
Hartree-Fock is introduced, which is checked by sum rules as well as by exact 
Goldberger-Adams expansions. The phonon-modulated internal energy and 
specific heat are calculated for different power-law coupling setups. 

KEY WORDS: Tunneling centers; glasses; amorphous materials; ther- 
modynamic properties. 

1. I N T R O D U C T I O N  

In a fundamental  paper  Anderson et aL ~1) have suggested an assembly of  
tunneling systems to explain the measured unusual the rmodynamic  and 
thermal  conductivi ty properties of amorphous  materials. Experimentally, it 
was found that  the specific heat of  glasses follows a T law (2'3) below 1 K, 
in contrast  to the expected Debye T 3 law. (3-5) The thermal conductivi ty is 
p ropor t iona l  to T. 2 A good  review of  the experimental situation is given in 
Hunkl inger  and Arnold. (6) Anderson et al. (~) propose  that the considered 
material  contains a set of tunneling systems, the intrinsic parameters  of 
which display a suitable distribution. In this semiphenomenological  con- 
cept the single tunneling system is asymmetr ic  and thus is characterized by 
two parameters,  a transitive one and an asymmetr ic  one. In their calcu- 
lation they did not  consider the coupling of  the tunneling systems to the 
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surrounding lattice excitations, such as phonons and others. From 
previous theoretical work on paraelectric/paraelastic centers (v-11) and from 
recent work on quantum diffusion (12-15) it is known that the modes of the 
surrounding exert a strong influence on the dynamical properties of the 
tunneling system. 

The principal aim of the present study is the investigation of the 
alterations of thermodynamic properties if the interaction of the tunneling 
process with phonons is taken into account. A first attempt in this direction 
was made by de Raedt and de Raedt, (16) who preferentially considered the 
hierarchical situation where the Debye frequency of the bath is smaller 
than the tunneling splitting of the two-level system. Also, their aim was 
more directed toward the susceptibility calculation, paying no attention to 
the specific heat. We also base our analysis on the archetype model of 
phonon-assisted tunneling given by Holstein, (17) which has been adopted 
by most workers in the fields of paraelectric centers (>n) and quantum 
diffusion. (12-15) This model displays spatial inversion symmetry and thus 
in its bare tunneling subpart is less general than the asymmetric AHV 
model (a) Yet our emphasis is on the phonon influences, the study of which 
is considerably facilitated if symmetry arguments can be used. Moreover, 
this restriction may help to decide whether and to what extent asymmetry 
is needed in the bare tunneling subsystem. 

We start with a standard perturbative calculation based on the 
Goldberger-Adams (GA) theorem. This yields the exact small-coupling 
limit of all thermodynamic quantities in the whole temperature range. In 
our context it is needed to have an additional check of our later 
approximate findings. 

The central part of our study will be a Green function approach, in 
which the full thermodynamic information is traced back to a single Green 
function. For this GF we develop a factorization procedure beyond the 
Hartree-Fock prescription, which on one hand is suggested by an exact 
antiresonance condition and on the other is able to reproduce the lowest 
four sum rules exactly. In the final part we compute the desired ther- 
modynamic quantities. 

2. H A M I L T O N I A N  

The generally adopted basic Hamiltonian ("archetype Hamilto- 
nian ''~17)) for mode-assisted tunneling can be written in the form 
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It describes a particle which can tunnel from a "left" state I/) to a "right" 
state rr), A being the tunneling matrix element. The pseudo spin operators 
crz, ax, and cry are defined as 

1 
cry== [ f l ) (  ll - I r ) ( r l ]  (2a) 

Z 

1 
Cry = 2~ [ [ l ) ( r l  - I r ) ( l t  ] (2b) 

1 
crz = - ~ [ l l > ( r l  + Ir~GI] (2c) 

z 

and satisfy commutation relations [ax, ay] =iazcycl.  The coordinates 
QK, Pk characterize the bath modes, which may represent true oscillatory 
excitations, but also electronic, excitonic, or other elementary excitations, 
the dynamics of which is modeled by oscillators, [Qk, P k ' ] -  = i6kk'. 

The Hamiltonian (1) has been considered by many workers both in 
the early stages of quantum diffusion (7-9'17) as well as in the present 
strongly revived discussion. (t3 xs) One may well consider the decay problem 
described by the Hamiltonian (1) as the most fascinating one which has 
not been solved exactly. On the other hand the Hamiltonian (1) may be 
viewed as the phonon-modulated extension of a symmetric Anderson- 
Halperin-Varma (AHV) Hamiltonian. (1) To be more specific, we consider 
power law coupling characterized by 

0 ~< Y2 ~< f2o (3) 

where p(f2) is the frequency density of the oscillatory subsystem and f2 D 
("Debye" frequency) is the cutoff frequency. In recent work (12-15) mainly 
the particular values m = 1 ("Ohmic dissipation") and m = 3 (coupling to 
phonons) have been considered, but in the problem of glassy materials also 
other powers may become relevant. For later reference we note the identity 

~, (2~D~ = 4a (2D (4) 
k m 

3. GOLDBERGER-ADAMS EXPANSIONS 

Since the Hamiltonian (1) cannot be solved exactly, we want to encase 
our approximate evolution of thermodynamic properties as far as possible 
in the framework of exact limiting requirements. A straightforward check of 
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our approximate results is the comparison with the correct analytic form of 
perturbative expansions. Therefore we derive these for later reference. A 
standard procedure to derive weak coupling expansions of thermodynamic 
quantities is the application of the Goldberger-Adams (GA) theorem. (tS) In 
our case it furnishes convergent expansions in the whole temperature range. 
The GA theorem reads 

e B(H~ #H~176 -'~(H~ (5) 

which yields for the partition sum (fl = 1/kB T) 

Z=tr(e-~H)=Zo 1-- d2 (e;~H~176 H~ 

where 

+ d2 d)U (e~H~176176176176176 3) 

(6) 

Zo = tr(e -~H~ (7) 

and 

1 n 
(x}H~ = Zo tr(e-a ~ (8) 

Similarly, by applying relation (5), we may write the thermal expectation 
value of X in the form 

( x } H = t r ( e  Z aHX) Z~176 d2 (e)H~176 H~ 

+ffd2fo'd2'(eaHoWe-~'Hoe)"HoWe-"HoX)Ho 

+ O(fl 3 W3X)] (9) 

Applying these formulas to the Hamiltonian (1), we are left with two 
choices for its separation into Ho and W. We decide to choose 

1 2 Ho = d .  (r z + $ ~ t~k(P k + Q~) = A 'az + Hbath 
k 

W=ax~DkOkQk 
k 

(10) 
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Performing the integrations in Eq.(6), which is a lengthy but 
straightforward calculation, we arrive at 

Z = Z o  {1 + 1~ Itanh (-~-) ~ D202 ( 3 - ~ Q  + d---~k) coth ( - - ~ )  

+ + O(D ) (12) 
k 

where 

Zo = 2 cosh (_fl_~) l- ~ 1 
k = 1 2 sinh(flQk/2) 

(13) 

Note that the second term in (12) is of order c~, where e is the coupling 
strength [see Eq. (3)]. From (12) we can derive the internal energy 
U = - 0  In Z/Off, 

Ubath Uspin 

cosh2(ff3/2)) 

k D k ~ k A + s  k A-~k . /C~  

- t a n h  (~A-)~ Dzf2~ (A@~k + A _ ~ k ) f f s  sinh2-Z~/2)j + O(D 4) 

(14) 

and the expression for the specific heat C = OU/OT. The latter expression is 
lengthy and is not explicitly given here. 

In a completely analogous way we find the GA expansions for the two 
expectation values (~z) and Zk Dk~2k(er~,Qk), which later prove to be of 
particular interest, 

1 + 1 

• coth - t a n h  f f - - 4 ( l _ e _ ~ k ) ( l _ e _ p a ) ( A + O k )  2 

e e'~ - e-eQk 1 2}] 
+ 4 (1 -- e-eak)(1 -- e-e'~) (3--Oe) +O(D~) (15) 
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~ D k # 2 k ( o x Q k )  H 
k 

= - 2 - -  T -  1 
k 
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+ #2~ - A ~ #2~ - A ~ coth tanh + O(D 4) 

(16) 

4. GREEN F U N C T I O N  T H E R M O D Y N A M I C S  

Since the early days of the Green function (GF) technique it has been 
known that for many coupled systems the full thermodynamic information 
is incorporated in a single GF. As regards the Hamiltonian (1), it was 
noted already in the instructive paper of Beck et a/. (19) that the nine 
pseudospin GFs <(a~[ aj>) may be traced back to two of them and that the 
thermodynamic quantity (az )  is found from ((ax[ax)). It is not difficult 
to proceed similarly for the oscillatory GFs such that in the end the ther- 
modynamic potentials are expressed via the single GF ((ax[ ax) ). 

We employ Green functions of the Zubarev type (2~ defined by 

( (A( t ) lB( t ' ) ) )  (r'a)= T i O ( - t - ( t - t ' ) ) ( [ A ( t ) ,  B(t ')]_ >~ (17) 

the Fourier transform of which, ((AIB))E, defines the spectral function 
IAB(e)), 

i 
IAB.(~O)=e#O~_l [ ( (AIB>>~+i , - ( (AIB) )o  ~ i~ ] ,  e = 0 +  (18) 

This function may be employed to evaluate correlation functions, 

(B(0).  A(t) " ) r = iAs(~o)e ,o~t do) (19) 
--oo 

Specifically, we find for thermal expectation values 

f+oo 
(BA 51~ = IAB(O9) do (20) 

where ( X ) r  ~ is defined in (6) and (9). 
Since by way of Eqs. (20) and (18) thermal expectation values can be 

derived from Green functions, the internal energy U =  ( H ) ~  of the 
phonon-assisted tunneling problem [-see Hamiltonian (1)] requires the 
computation of the GFs ((PklPk)), ((Qk[Qk)), ((Qk[ax)). We show 
below that all these GFs can be traced back to the single GF((a  x lax)) and 
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that also the remaining partial expectation value (r of ( H ) ~  follows 
from ((Crx I a~ }}. 

The general equation of motion for the Zubarev GF((AIB}} E 
(Fourier transformed, E = o) + ie, s = 0 + ) reads 

1 
E ( ( A [ B ) ) E = ~ ( [ A , B ] _ ) ~ + ( ( [ A , H ] _ I B ) ) e  (21) 

or, alternatively, 

E ( ( A J B ) ) e = I  ( [ A , B ] _ ) ~ - ( ( A I [ B , H ] _ ) > E  (21') 

Employing Eq. (21), we get 

E((Qkt~x )) e = i~e (( Pk l a~ )) s (22) 

E((Pklox))s= --iO~((Qklax))u--iOkDk{~r:,lox)) e (23) 

which we combine to 

\\ 02Dk 
( < Q k l a x / / e = E ~  2 <(o~lax>>e= <<a~l Qk>>s (24) 

which is one of the needed GFs. Similarly, we can find <<Qk[ Qk>>e, 

E<<Q~ [ Qk >>E = iOk<<Pk I Qk>>E (25) 

i 
E<<Pk]Qk>)e= --2~--iOk((QkIQk))e--iOkDk((crx[Qk))E (26) 

Combining these two equations and inserting (24), we have 

~Qk (f22Dk) 2 
((QklQk))E-2rc(E2t.22) ]-(E2 Ok2) 2 ((axlCrx))s (27) 

Finally, we evaluate ( (PkJPk))s  by proceeding from Eq. (22) via the 
second equation of motion (21'), 

i 
E ( ( f  k j Qk >)~ . . . .  iOk((Pk ] P~))E (28) 

2re 

which we insert in Eq. (25), 

Oh O~((SklPk>s (29) E 2 (( Q k l Q k )) e = ~-s + 
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and using Eq. (27), we find 

~ k  2 2 2 E (2kD k 
<<P~I Pk>> - 2n(E 2 _ Q ~ )  t- (E 2 _ ~r~2)2 <<o'x[ o'x >>E (30) 

In this manner we have succeeded, as already mentioned above, to trace 
back all partial expectation values of ( H ) ~  (apart from (o-z)~) to the GF 
((o-xlo.x)). The <o.~)/~ will be found also in the process of calculating r 
((o.~ ] o-x)). Collecting results, we have 

1 
~ ~k Y2k( (( Pk l Pk )) E "4- (( Qk l Qk )) e) 

1 t? ~ ~ ~I 1 ~. D~g2 k 1 1 
=2-n~ ~ E2---~2~ + <<o'xlo'~>>e~k (E--~2k) 2 ~- (E+-g2k) 2 (31) 

5. FACTORIZATION BEYOND HARTREE-FOCK 

We now want to find a solution for the GF ((ax[ a x ) ) e  itself. To this 
end we establish the hierarchy of equations of motion for ( ( a  x ] a x ) ) e ,  

E<<ax [ ax >> E = - - iA <<ay lax >>,r (32) 

i 
E<< o-y I o.x >>~ = - ~ <o-z> T" + iZ <<o.x I o.x >>~ 

- i ~ OkDk<(o.  z Qk I o'x ) ) e  (33) 
k 

At this stage of hierarchy we earlier introduced a Hartree-Fock factoriza- 
tion(15) 

(( o. z Q k ] o. x )) e .~ ( o. ~ ) ~ (( Q k I o-x ))e (34) 

By this approximation the set of equations of motion for ((o.xl o 'x ) )e  can 
be closed. However, although this kind of factorization is very frequently 
used in the literature, it is inappropriate if it violates basic sum rules. In 
point of fact, when checking the sum rules of the factorization (34) itself as 
well as the sum rules of the GF  (<o-xl ox))e derived from it, we have found 
that even the lower sum rules are not conserved. 

We therefore introduce an improved factorization procedure by 
requiring that the lower sum rules of the factorization itself as well  as those 
of the GF in question be preserved. The first option in this direction is the 
factorization 

<< o-z Qk I ~ >> e = r/<< Qk I o-:, >> e + ~ << o.:, I o-x >>E (35) 
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which, with respect to the spectral function I~zok;~x, amounts to the 
factorization 

IozQ~;~x(Cn ) = tIIQk;r ) + ~/~x;~(co) (36) 

This constitutes already a considerable improvement beyond the H F  
factorization (34). The two open parameters q and ~ are determined by 
sum rules. 

In our analysis we resort to the sum rules for the spectral function IAe, 

f+" M(")= IAB(~O) CO" de) 
- - o o  

= ( B [ . . . [ [ A ,  H ]  _ ,  H ]  .... H ]  _ } 

= ( [H,... [H, [H, B] _ ] _ A } (37) 

Applying this rule to the spectral functions of Eq. (36), we find 

i 1 
Mo" -- -~ <ayQk>~ =q(a~Q~}~ +~r (38) 

i i H 
M~" ~ < ~ O k } ~ = r l < a y O k ) ~ - ~ < a ~ ) r  (39) 

We now apply the identity 

< [ A ,  H ] _  >H------O (40) 
T 

which often is a useful aid in calculating thermal expectation values, 
Specifically, it yields 

< a y Q ~ } ~ = 0  (41) 

Employing this, we get from Eqs. (38) and (39) that rt = 1/(4<e=}~) and 
~= --<a~Qk}l~/<a~}H r and thus from (35) 

1 <a~Qk>~ 
<<a~Qk[ax>>e 4<a~}ru <<Q~lax>>e+ 7- -7-~r~  <<a~lax>>e (42) 

The most striking feature of this formula is the fact that <a~}~ appears in 
the denominator now, which is the inverse behavior to the Hartree-Fock 
factorization (34). Consequently, the thermal behavior of physical proper- 
ties such as the damping or the tunneling frequency of the diffusion process 
is quite different, not to say contrary, to the results based on Eq. (34). 
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Inserting (42) and (24) in Eqs. (32)-(33), we have 

A 
Eg((cr~ I ~>>E = - ~  <G> + A2<(ffxl O'x)>E 

- A  ~,Y2kD k l  1 Y22kDk 
4<~r~ ) e 2 - / 2  2 

k 

<axQk>] 

(43) 

whence we finally arrive at 

A<-o -z )  f2s F 
- -  - - ~ E  - a s - L  

with abbreviations 

(44) 

AI2~Dk s163 2 2 2 
k (a~) V- -4Os( - -az )  

(45) 

In passing we mention another way of arriving at (44) (45). Combining the 
equations of motion for the GFs ((axl ax))e,  ((ayl ax))e, ((azQkl ax))e, 
etc., one gets 

(E2- ~2)<< ~xl ~x>> ~ 

= -2re (az) +EZ--A2 s Dk,((azQkla,~Q~,))e 
kk 

l ~(2kDk(axQk) } (46) 
2n 

which is still an exact relation. An antiresonant ansatz for {---} finally 
leads to (44)-(45). 

Finally, it is instructive to glance at the GF  procedure used by 
Zwerger (21) for the dissipative dynamics of the Hamiltonian (1). In that 
paper the second step of the GF  hierarchy is chosen in an alternative 
manner to our Eq. (33), 

E((ay lax>)E = -- ~ <az ) + iA ((ay I ay )>e (47) 

and the hierarchy is terminated at this step. The unknown GF ((ay] ay)) 
then is transcribed via a displacive unitary transformation and factorized in 
an appropriate way. For details we refer to the original paper. In the end 
the lowest sum rule is employed as a self-consistency requirement, whereas 
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higher sum rules are not considered. In our calculation the GF hierarchy 
is terminated after the fourth step; two sum rules are used as self-con- 
sistency requirements and the two further sum rules are satisfied automati- 
cally (see Section 7). 

6. EXACTLY SOLVABLE SISTER P R O B L E M  
( O S C I L L A T O R - B A T H )  

For computational economy it is highly advantageous at this stage to 
glance at the sister problem to our spin-bath setup, which is the oscillator- 
bath problem characterized by the Hamiltonian 

Ho u = 1 2 2 g f 2 , ( P , + Q , ) + � 8 9  2 ~k(P~ + Q~) + Q~ 2 V~Q~ (48) 
k k 

The decay problem ( Q , ( 0 ) Q , ( t ) )  pertinent to this Hamiltonian is one of 
the very few exactly solvable models in statistical physics and has been 
handled by Ullersma (22) and Louisell and Walker ~23) and more recently 
Wagner. (24~ The GF  ((Q,[ Q s ) ) e  reads 

a,[ va, <v2] * 
( ( O s l O s > > ~ = ~  E ~ -  ~ ~ ~ - o ~ .  (49) 

and thus is seen to be just of the form found for ((ax I~x))E [see Eq. (44)] 

~ < - ~ >  
<<O'xlcr~>>E - -  <<Q, IQ,>>E (50) 

C2s 

if we use the identification (45). In this manner our factorization has traced 
back the tunneling problem to the exactly solvable oscillator-bath 
problem. We have to keep in mind, however, that the effective quantities 
f2 s and V~ [see (45)] now are temperature dependent. 

In our context the great efficacy of returning to the oscillator-bath 
problem lies in the fact that the odd sum rules for Iosos(o ) are of a 
particularly simple nature. Generally we have 

~D 
"lAr(2n + 1) = ~t-2 s S(Q)- ( - t ) - K 2  2"+~ dg2 (51) ~'~ QsQs 

a~t(2~) _/2~ S(s coth f2 2" dr'2 ~'* QsOs -- (52) 

822/56/3-4-7 
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where 
1 r ( o )  

s ( o )  = (53) 
[ ~  _ a~  - H ( ~ ) ]  , + r ' ( ~ )  

mo)=2efo ~176 rc f22 _ 12,-----~ 2 d~2' (54) 

Here we have replaced Z k " "  by an integral, where p(e)) is the frequency 
density of the bath. Specifically, this yields 

C2~ 

2 
(55a)  

"(23 (55b) 
2 

M~]~ ~?s[ C 2 4 + 2  ~ V 4] (55c) 

We will employ these relations to evaluate the sum rules of the spectral 
function I~x~x belonging to the tunneling problem. From Eq. (50) we have 

M(.) _ A ( - a ~ )  - M ~ ) e .  (56)  

7. R IGOROUS C O U N T E R C H E C K S  A N D  SELF-CONSISTENCY 
PROCEDURE 

Our extended factorization prescription [Eq. (42)] has the virtue of 
not involving free parameters. But it involves the thermal expectation 
values (cry) and (o- x Qk), which have to be determined in a self-consistent 
way. We achieve this aim by considering the exact sum rules of the spectral 
function I~x~x(co), which we calculate by way of Eq. (37). We find 

1 
M (~ = - (57a) 

~x~x 4 

1 A ( ) _ _  (a~)  (57b) M . . . .  - 2 

A 2 
M (2~ = - -  (57c) 

,,x,.x 4 

. . . .  -~ A2(~rz) + A ~ f2kD~(~rxQ~) (57d) 
k 

M(4) = - -  z12-t'- Z DkDk'f2J2~'(QkQk ') (57e) 
,,x~x 4 . k,~, 
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This sequence of moments constitutes another rigorous frame for checking 
our approximate spectral function I ,  . . . .  the moments of which we may 
calculate from Eqs. (56). Using the definition (45) of C2 s and Eqs. (55a) and 
(55b), we make the remarkable observation that the first and third 
moments [-see Eqs. (57b) and (57d)] of our approximate spectral function 
automatically display their exact values. This offers us the possibility to 
employ the zeroth and second sum rules as self-consistency conditions to 
determine the unknown expectation values (~rz) and ZkC2kDk(axQx). 
From Eqs. (57a), (57c), (56), and (52) we arrive at 

A ( - c r z )  S(s coth dO = 

A ( - a z )  S(O) 0 2 coth dr2 = -~- (59) 

Since 

s Qk) ~ ~ - af2D 
k m 

for 3 --*0 

[see Eq. (4)], it proves useful to introduce a quantity B by means of the 
definition 

f2kDk(axQk)~ = _ C~..____RO (1 -- B) (60) 
k m 

The self-consistently determined B turns out to be a small quantity (B ,~ 1) 
for all cases of practical interest. We now consider again the power law 
coupling setups of Eq. (3) and further introduce the abbreviations 

A f2 c~ 
xs=c2 D x = - -  ~ -  - -  (61) ' n o '  ( - c r z )  

Then the self-consistency equations for ( -  ~z) and B read (m = 1 or 3) 

m-l  2)  
l+x  ]2+r~ q2) i =1 

(62) 
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( -erz)  ~x m+ 2 coth x 

m - l ~  2 ( 1 _  B~ ~ 

xs~ x m In 1 + x ]2 l-re -]2-} 1 dx=-~l 
- Y  1---; (63) 

So for any given values of the coupling strength ~ and of the temperature 
the corresponding values of ( - a ~ )  and B can be calculated numerically. 
The result for ( - ~ z )  is illustrated in Fig. 1 for m = 1 (Ohmic dissipation). 
For other powers (m--2, m--3)  the qualitative behavior is similar. 

Beyond the virtue that our spectral function I~x~x satisfies the lowest 
four sum rules, we have the additional option of checking the self-con- 
sistency requirements themselves by exact Goldberger-Adams expansions. 
Since both for the self-consistency requirements (58) and (59) as well as for 
the GA results (15) and (16) it is not feasible to write down general 
analytic expressions, we confine ourselves to deriving simplified expressions 
for three different temperature regions. For very high temperatures 
(kB T>> g2D) the self-consistency equations (62) and (63) yield 

(az )  = --~tan + 12~+O(c~2)  for r e = l , 3  (64) 

( ~Dkf2k(axQk)--  ~s 1 + 0 ( ~  2) for m = l ,  3 (65) 
k m ]-2-J 

Fig. 1. 

<-@ 
J 

0 . 5  o.4 7 : ~  
0.3 = ~  
0 . 2  

/-=2 
O . I .  

f=2J 

o o5 o~2 

Plot of  ( - e , )  as a function of temperature and coupling strength for m = 1 ("Ohmic 
dissipation"), ~=kBT/A, and x s = A / ~ D = 0 . 1 .  
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For very low temperatures (kB T~ A) we have 

(O'z)  

_ 1 1 (kB T) 2 ~2 2 

1 1 2 1 (kB T) 4 2re 4 2 

for m = l  
(66a) 

for m= 3 
(66b) 

Dkf2k(a~Qk 
k 

__ c~g2I~ 1--x'ln~-Xs)4 --A-ff~-3+O(~ 1 

m ( I  ( 3 z (kBT) 42~'4 

for m= 1 
(67a) 

for m=3 
(67b) 

Finally, in the intermediate temperature regime (d 4 k~ T4 ~D) we obtain 

2 
- ~ - I 1 - 2 c ~ (  lnfl~-~D~ flg?D ~)]  -I-O(~2) for m = l  

(CVz) = (68a) 

- ~ [ 1 - 2 ~ ( ~  fl--~D)]+O(~2) for m=3 
(68b) 

~ Di~Qk(axQk) 
k 

[1 xs(flA) (ln - -  t- ~--~D) + O(~)] 
_ cff2~ 2 2 3 

4 -~--~D -t 9 (fl~D) i +O(e) 

for m = l  
(69a) 

for m=3 
(69b) 

All these expressions coincide with those found from the GA equations (15) 
and (16) up the leading coupling term. 

8. T H E R M O D Y N A M I C  PROPERTIES DERIVED FROM 
GREEN F U N C T I O N S  

We now come back to the calculation of the thermodynamic potential 
U= ( H ) r  H (see Section 4). Using relations (20), (18), and (31), we find 
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U = ( H )  

= A(a~) + Y, Dk~k(a~Ok> 
k 

1 f+~ 
+ ~ ~ ~?k -~  [Ipkp~(~o) + le, e,(~o)] do 

= d (az)  + 2k DkOk(~xQ~ ) + ~ ~ Oh coth 

+ -~  I_k 4 (E--f2k)2+(EW-f2k) ~ ((axlax)>e ~,+i. 

-- ~k D~f23k [ 1 1 >> E q ida) 
~ ( E _ t 2 k ) 2 - +  (E+f2k)2) <<a~lax e = o , _ j  e ~ 7 1  

(70) 

The last term in Eq. (70) is handled in Appendix A. Using the result (A2), 
we are finally left with 

af2 D 
U= 2A(az)  + Ub~t~-~m--m (1 - B )  

( 2 2 
"~ (0"z)2~'2D coth -t fl~2D n 

x arctan x, ~xm/2 

xEcot (  ) l x) 
sinh Z(flf2DX/2 ) J 

(71) 

where 

Ub~th = ~k ~'~k coth ( - ~ )  (72) 

and where in the integrand the minus sign has to be taken for m = 1 and 
the plus sign for rn = 2, 3. 

Equation (71) allows us to calculate Ue-- U-- Ubath--aOD/2m and the 
specific heat Ce= ~?Ue/~?T= C-Cbath numerically for any given values of 
temperature and of the coupling strength e, since (az)  ~ and B can be 
obtained by self-consistency. The results for Ue and Ce are illustrated in 
Figs. 2-4 for m = 1, 2, 3. We recognize that the typical peak characterizing 



T h e r m o d y n a m i c s  of  P h o n o n - M o d u l a t e d  Tunnel ing  Centers  347 

0 I 2 3 =- 7" 

-0.1 

V M /  

] / / ~ " ~  c~ = 0.1 

-0.4 ~ ~- 0.05 

I /  
-0.5 ~ a ~ 0 

0.4 

0.3 

0.2 

0.1 

0 
i L 

(a) (b) 
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the specific heat of the pure spin system is diminished by the coupling and 
that the peak position is shifted to lower temperature. 

It is desirable to obtain also some simple analytic forms of the results 
in Figs. 24 .  This can be achieved only for the selected temperature regions 
considered earlier, and for small values of c~. The results then are obtained 
by a lengthy but elementary series expansion analysis of the arctan integral 
in (71). We refrain from giving the details of this straightforward calcula- 
tion. We use the abbreviations Cbath and Cspin describing the specific heat 
of the pure oscillatory and spin subsystems, 

~ ( _ ~ ) 2  sinh2(flQk/2 ) 1  Obath = Ubath = kB ~k (73) 

~T (~_)2 1 (74) Cspin = U~pin = kB cosh 2(flA j2  ) 

Then for very high temperatures (k B T>> Qo) we get 

C = Cbath + kB ( fl--~j)2 (1 ~ I)) q- O(fl4A4kB) for m =  1,2,3 (75) 



Thermodynamics of Phonon-Modulated Tunneling Centers 349 

For very low temperatures ( k B T ~ A )  we have 

C = Cbath + Cspin -I- ccm(m + 1 )(m!) ~(m + 1 ) - -  
(k B T) m 
f2~, 13 for m = 1 , 2 , 3  (76) 

where the zeta function ~(m + 1) can be simplified to [compare Eqs. (66a) 
and (66b)] 

J'~2/6 for m = 1 (77) 
ff(m + 1) = ~rc4/90 for m = 3 

In the intermediate temperature regime A ~ kB T ~  f2 o we are left with 

C = Cbath q- kB ( fi~ ) 2 

I ( ~ - ~ ) - 2 ~  ( 1 -  0~)e -9=/1~ for m = l  (78a) 

e2~, 2c~5 I ! _  tfl----~D) for m = 2  (78b) 

for m = 3  (78c) 

Comparing the expansions (76), (75), and (78) with the corresponding 
ones derived from the Goldberger-Adams result (14), it is very satisfactory 
to note that for each temperature region there is a complete coincidence up 
to the leading coupling term inclusive. 

9. S U M M A R Y  A N D  R E M A R K S  

In this study we have investigated the thermodynamic aspects of a 
Hamiltonian which during the past 30 years has been taken as the arche- 
type Hamiltonian for mode-assisted tunneling processes ("soft tunneling"). 
The main purpose of our investigation has been twofold. On one hand 
we sought to derive an exact and explicit representation of the thermo- 
dynamic potentials in terms of the specific Green function which also 
governs the tunneling evolution. This has been fully achieved by means of 
a Zubarev Green function technique. On the other hand, our aim has been 
to establish in an alternative way exact and explicit series expansions for 
the thermodynamic behavior, which can be exploited to check the Green 
function result. This has been achieved by an appropriate applicaltion of 
the Goldberger-Adams theorem, by means of which we were able to give 
series expansions in the whole temperature range. 

By a factorization beyond the HF procedure we have derived an 
approximate spectral function Iox~x of the tunneling problem, which can be 
traced back to an effective oscillator-bath problem with temperature- 
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dependent intrinsic parameters. Our factorization procedure constitutes a 
considerable improvement beyond the generally used Har t ree-Fock 
factorization, since it displays the flexibility to satisfy sum rules. It may be 
extended by adding further basic Green functions such that step by step 
higher sum rules could be reproduced. The version used in this paper 
already establishes a serious alteration of the qualitative features found 
within the HF scheme. We also note that our factorization procedure does 
not invoke adjustable parameters, but the weight of the single GF con- 
tributions is determined by consistency requirements, which themselves are 
based on sum rules. The spectral function I~x~x found in this manner 
automatically conserves two of the lower sum rules by its analytical form, 
and materializes two others by self-consistency requirements, whence in 
total the four lowest sum rules are correctly given in the whole temperature 
range. Further, our spectral function also matches the thermodynamics up 
to the dominant coupling term inclusive in the whole temperature range, as 
shown by comparison with the exact Goldberger-Adams calculation. 

In the intermediate temperature range A ~ k B T 4 ~ ( 2  D the excess 
specific heat Ce follows a T 2+2~ law in the case of Ohmic dissipation, 
whereas for rn = 3 the T -2 law of the uncoupled tunneling system is preser- 
ved, the only effect of the coupling being a reduction factor depending on 
e. In the very low temperature region we get a T m law (m = 1, 2, 3) for Ce. 
Having a view of the whole temperature range, we notice that the coupling 
to the surrounding bath modifies the thermodynamic properties of a two- 
level system quite considerably; it suppresses the typical peak of the specific 
heat and obviously shifts its position to lower temperatures. 

With regard to the glass problem, the most interesting result is the T m 

law of the excessive specific heat Ce at low temperatures. In metallic 
material it is believed (12~ that in the low-frequency regime the role of the 
phonons is less important than that of electronic excitations across the 
Fermi level. These excitations theoretically also may be described as 
oscillatory ones, which is a standard assumption in quantum diffusion. (12) 
If this is done, a coupling law with m = 1 would be effective. Then one 
arrives at a first power law for Ce already for the single symmetric tunnel- 
ing center of our study. Whether this suffices to explain quantitatively the 
behavior of metallic glasses must be left to future work. 

For  nonmetallic material many different types of coupling laws have 
been proposed in the context of tunneling centers. Most often the rn = 3 law 
has been chosen. (7'8) We should keep in mind, however, that the power 
very sensibly depends on the assumption of how the tunneling system is 
built into the lattice. If one ascribes the peculiar Ce behavior of nonmetallic 
glasses to the interaction of tunneling systems with phonons, the required 
power law rn = 1 would supply a useful hint to the nature of the tunneling 



Thermodynamics of Phonon-Modulated Tunneling Centers 351 

objects, which presently still are not known; e.g., one could think of objects 
having a finite linear extension instead of point centers. However, this 
remark is of a very speculative nature and careful analysis remains to be 
done. In the present stage it cannot be decided whether the observed T 
behavior of thermodynamic properties is predominately due to a distribu- 
tion of bare asymmetric tunneling centers or to (possibly not pointlike) 
tunneling systems coupled to phonons with a specific coupling law m = 1. 
Further progress can only be made if realistic models for such a coupling 
are established. It would seem appropriate to treat this question before 
studying the interaction of tunneling centers mediated by phonons. 

APPENDIX  A. T H E R M A L  EXPECTATION VALUE OF THE 
G F Z k l  z a ( E + Q , ) - 2 ] ( ( ~ x l a x ) ) E  ~ D , Q , [ ( E -  Qk ) -2  + 

Using (44), (45), and (54), we can rewrite the GF: 

~, [D2(2~ [ 1 1 ) 
; ~ \(e_Qk)2+ (E§ Ok) 2~ <<ax lax >>E E=o~+~ 

< - a z >  &.n~  v# - + 
= ~ ~ 2,~ 

t2 [2 v 2 \  1 
x E 2 -  : ~2 k s - k ~  

Y2. - - ~  E 2 _ f 2 2  I 
k k / E = o o + _  it: 

- 000 A 00 [H(00) -T- iF(00) ] 

[o02 - -  g?~ - -  H ( 0 0 1 ]  T- iF(00) 
x [002_ o 2  - H(00)] 2 + F2(00) (A1) 

A straightforward calculation then yields 

oo e~~ 4 \ ( E _ O D 2 + ( E + - O k ) 2  {a: ,  
ie 

4<--a:> A < - a ~ >  

3 27r 

X + c o  J;_co [ (a/a00)00n(00) ] r(00) + [ (a/a00) 00r(00)] [00~- o ~  - ~-(00)3 

1 
x eaOO _-----~ do  

[00~ - n ~  - n ( 0 0 ) ]  = + r ~ ( ~ )  



352 Junker and Wagner 

2< f+oo Iaxax( 0))(~2 __ 30)2) do) 
d 

2 f o (  fl0)'~fd �9 [ -~2--H(0))]'~& ~ + -  ( - a z >  2 o) coth -~--) ~--~ arctan 0)2 
v(0)) J/ 

2< - az ) A  41 (t2~ _ 3zff) + 2re < - az >2 t'2D coth --~--- + ~ ?)  

-- f~o Darctan[0)2(l+~xs)--f2:+Af2Dr ~ j [_ ~ (0) c~ -~~)] do) ] 

(A2) 

where Eqs. (57a)-(57c) and the expansion ln[( l+x)/(1-x)]~2x for 
small x have been used. In the integrand the minus sign has to be taken for 
rn = 1 and the plus sign for rn = 2, 3. 

A P P E N D I X  B. O S C I L L A T O R - B A T H  P R O B L E M  

We apply the Green function problem described in Section4 to 
evaluate the thermodynamics of the oscillator-bath problem with 
Hamiltonian (48). The formulas corresponding to (24), (27), (29), and (30) 
are 

((Qk I Qs )]> E = E-522-~2 ((Q, I Q~))E 

ok 
((Ok I Ok))e = 2~r(E 2 _ t?~) + 

f2~ 

1 E 2 
<<P'lP'>>e= - 2rrf2 -+~Ss~e-; ((O,I Os))e 

(Bla) 

2 2 ~'k Vk 
(E2 g--2k2)2 ((QslQ,))e (Blb) 

2 2 E V k 
(E2 f2~)2 ((Q, I Q,>>E (Blc) 

(Bld) 

and the fundamental GF ((Qsl Q,))e is given by Eq. (49). 
Note that (49) is an exact result: in contrast to the tunneling problem, 

there is no need for factorization. The internal energy is then given as 

1 2 2 _~_ ( 2 U=(H)=~O,(<Ps)+<Q,>) �89 O k ) ) + ~ V k ( Q k Q , >  
k 

(B2) 
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where [see Eq. (52)] 

1 2 f + ~  1 [2,(<P~ > + <Q2)) = co ~ (r176 + 02) I~176176 dco 

';:o 
= ~  (r + f22) S(r coth &o (B3) 

Z Vk<QkQs> = - ~ ((Qs] 
e _~ em~ 1 E - [ 2  k =~,+i~ 

QkQ, V 2 

Q~))E u o, ] 
s <<O,I 

E ~ - n ~  = _ , ~  

2 2 = (~o - [2 s )  S(co) coth do) (B4) 

In a similar manner as in Appendix A, we can calculate the bath part in 
(B2): 

l ~ o ~ ( < p 2  ) + <Q2>) 
2 e  

=~ [2k ~ -  corn "' flOk ~ 2 l f~DS(~)c~ (3092-t22)&~ 

d 
+ l f : D c o c ~  c~ F(co) d/do9 (B5) 

Collecting the results (B2)-(B5), we are left with 

//~r'~k'~ ~ D  ~co th  fl~'~D . 2 2 1 [- d // "h fl~'~D 
U =  ~ n* c~ k ~ - )  + 4-- ( fl[2D k 2 ZC 

Ubalh 

x arctan (~/2) 4O:Xs xm 

where the minus sign has to be taken for m =  1 and the plus sign for 
m = 2, 3. Note that we have supposed a power law coupling of the form 

V2(~2) p([2) = 4~s D ~DD (B7) 
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Expression (B6) can be rewritten as 

~ -  com - ~ -  + ~--  22s coth 2, + 4~x~ x2 
U = V f2k . /?Ok f2D X ~ 

2 

Xfl~D/2 ] dx 
sinh 2(fig2Dx/2 ) J J 

x[coth(  ) 
where 

xs = x s  xs m - with x~ - ~r 

Junker and Wagner 

(B8) 

( + f o r m = l ;  - for m = 2 , 3 )  

(B9) 

For  ~--+ 0 we get the result for the uncoupled system: 

U = Ub~th + ~ -  coth (B10) 

In the very high temperature regime an evaluation of the coth and sinh 
terms yields 

Y coth - -  + - - - -  com t - -  - - t  + ~s s -T- .~2 
U = V T  2 2 x, \ 2 x , J  

(B l l )  

For  very low temperatures (T-+ 0) the specific heat follows a T m law: 

(flO,.~s'] 2 1 
C = Cbath + kB \ - - ~ x ~  / sinh2(fls 

a m ( m +  1)(m!) ~(m+ 1) (kBT)  m 
+ 2kB 1 -- 4~/mx s +_ 4c~x s 12sl2~- 1 (B 12) 

N O T E  A D D E D  IN PROOF 

In the meantime another paper on the subject has appeared 
(R. G6rlich and U. Weiss, Phys. Rev. B 38:5245 (1988)), in which a 
different method has been employed. These results support our findings. 
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